//use chrono::Utc; use nvml_wrapper::Nvml; use reqwest::{Client, StatusCode}; use serde::{Deserialize, Serialize}; use std::{error::Error, fs, process::Command, time::Duration}; use sysinfo::{CpuExt, DiskExt, System, SystemExt}; use tokio::time::{interval, sleep}; // Data structures matching the C# DTOs #[derive(Serialize, Debug)] struct RegistrationDto { #[serde(rename = "id")] id: i32, #[serde(rename = "ipAddress")] ip_address: String, #[serde(rename = "cpuType")] cpu_type: String, #[serde(rename = "cpuCores")] cpu_cores: i32, #[serde(rename = "gpuType")] gpu_type: String, #[serde(rename = "ramSize")] ram_size: f64, } #[derive(Serialize, Debug)] struct MetricDto { #[serde(rename = "serverId")] server_id: i32, #[serde(rename = "ipAddress")] ip_address: String, #[serde(rename = "cpu_Load")] cpu_load: f64, #[serde(rename = "cpu_Temp")] cpu_temp: f64, #[serde(rename = "gpu_Load")] gpu_load: f64, #[serde(rename = "gpu_Temp")] gpu_temp: f64, #[serde(rename = "gpu_Vram_Size")] gpu_vram_size: f64, #[serde(rename = "gpu_Vram_Usage")] gpu_vram_usage: f64, #[serde(rename = "ram_Load")] ram_load: f64, #[serde(rename = "ram_Size")] ram_size: f64, #[serde(rename = "disk_Size")] disk_size: f64, #[serde(rename = "disk_Usage")] disk_usage: f64, #[serde(rename = "disk_Temp")] disk_temp: f64, #[serde(rename = "net_In")] net_in: f64, #[serde(rename = "net_Out")] net_out: f64, } #[derive(Deserialize)] struct IdResponse { id: i32, #[serde(rename = "ipAddress")] ip_address: String, } #[derive(Serialize)] struct HeartbeatPayload { #[serde(rename = "IpAddress")] ip_address: String, } struct HardwareInfo { cpu_type: String, cpu_cores: i32, gpu_type: String, ram_size: f64, ip_address: String, } impl HardwareInfo { async fn collect() -> Result> { let mut sys = System::new(); sys.refresh_cpu(); sys.refresh_memory(); let cpus = sys.cpus(); let cpu_type = cpus .get(0) .map(|c| c.brand().to_string()) .unwrap_or("Unknown CPU".to_string()); let cpu_cores = cpus.len() as i32; let ram_gb = (sys.total_memory() as f64) / 1024.0 / 1024.0; let gpu_type = Self::detect_gpu_name(); let ip_address = local_ip_address::local_ip()?.to_string(); Ok(Self { cpu_type, cpu_cores, gpu_type, ram_size: ram_gb, ip_address, }) } fn detect_gpu_name() -> String { Self::try_nvml_gpu_name() .or_else(Self::fallback_gpu_name) .unwrap_or_else(|| "Unknown GPU".to_string()) } fn try_nvml_gpu_name() -> Option { let nvml = Nvml::init().ok()?; let device = nvml.device_by_index(0).ok()?; device.name().ok().map(|s| s.to_string()) } fn fallback_gpu_name() -> Option { #[cfg(target_os = "linux")] { let output = std::process::Command::new("lshw") .args(&["-C", "display"]) .output() .ok()?; Some( String::from_utf8_lossy(&output.stdout) .lines() .find(|l| l.contains("product:")) .map(|l| l.trim().replace("product:", "").trim().to_string()) .unwrap_or("Unknown GPU".to_string()), ) } #[cfg(target_os = "windows")] { let output = std::process::Command::new("wmic") .args(&["path", "win32_VideoController", "get", "name"]) .output() .ok()?; Some( String::from_utf8_lossy(&output.stdout) .lines() .nth(1) .map(|s| s.trim().to_string()) .unwrap_or("Unknown GPU".to_string()), ) } } } async fn get_server_id_by_ip(base_url: &str, ip: &str) -> Result<(i32, String), Box> { let client = Client::builder() .danger_accept_invalid_certs(true) .build()?; let url = format!("{}/monitoring/server-id-by-ip?ipAddress={}", base_url, ip); loop { println!("Attempting to fetch server ID for IP {}...", ip); match client.get(&url).send().await { Ok(resp) if resp.status().is_success() => { let text = resp.text().await?; println!("Raw response: {}", text); // Debug output let id_resp: IdResponse = serde_json::from_str(&text).map_err(|e| { println!("Failed to parse response: {}", e); e })?; println!( "✅ Received ID {} for IP {}", id_resp.id, id_resp.ip_address ); return Ok((id_resp.id, id_resp.ip_address)); } Ok(resp) if resp.status() == StatusCode::NOT_FOUND => { println!( "❌ Server with IP {} not found in database (will retry in 10 seconds)", ip ); sleep(Duration::from_secs(10)).await; } Ok(resp) => { println!( "⚠️ Server responded with status: {} - {}", resp.status(), resp.text().await? ); sleep(Duration::from_secs(10)).await; } Err(err) => { println!("⚠️ Request failed: {} (will retry in 10 seconds)", err); sleep(Duration::from_secs(10)).await; } } } } async fn register_with_server(base_url: &str) -> Result<(i32, String), Box> { // First get local IP let ip = local_ip_address::local_ip()?.to_string(); println!("Local IP address detected: {}", ip); // Get server ID from backend (this will retry until successful) let (server_id, registered_ip) = get_server_id_by_ip(base_url, &ip).await?; // Create HTTP client for registration let client = Client::builder() .danger_accept_invalid_certs(true) .build()?; // Collect hardware info let hardware = HardwareInfo::collect().await?; // Prepare registration data let registration = RegistrationDto { id: server_id, ip_address: registered_ip.clone(), cpu_type: hardware.cpu_type, cpu_cores: hardware.cpu_cores, gpu_type: hardware.gpu_type, ram_size: hardware.ram_size, }; // Try to register (will retry on failure) loop { println!("Attempting to register with server..."); let url = format!("{}/monitoring/register-agent-by-id", base_url); match client.post(&url).json(®istration).send().await { Ok(resp) if resp.status().is_success() => { println!("✅ Successfully registered with server."); return Ok((server_id, registered_ip)); } Ok(resp) => { let status = resp.status(); let text = resp.text().await.unwrap_or_default(); println!( "⚠️ Registration failed ({}): {} (will retry in 10 seconds)", status, text ); } Err(err) => { println!("⚠️ Registration error: {} (will retry in 10 seconds)", err); } } sleep(Duration::from_secs(10)).await; } } async fn heartbeat_loop(base_url: &str, ip: &str) -> Result<(), Box> { let client = Client::builder() .danger_accept_invalid_certs(true) .build()?; let url = format!("{}/heartbeat/receive", base_url); loop { let payload = HeartbeatPayload { ip_address: ip.to_string(), }; match client.post(&url).json(&payload).send().await { Ok(res) if res.status().is_success() => { println!("Heartbeat sent successfully."); } Ok(res) => eprintln!("Server responded with status: {}", res.status()), Err(e) => eprintln!("Heartbeat error: {}", e), } sleep(Duration::from_secs(20)).await; } } struct MetricsCollector { sys: System, nvml: Option, server_id: i32, ip_address: String, } impl MetricsCollector { fn new(server_id: i32, ip_address: String) -> Self { Self { sys: System::new(), nvml: Nvml::init().ok(), server_id, ip_address, } } async fn collect_and_send_loop(&mut self, base_url: &str) -> Result<(), Box> { let client = Client::new(); let url = format!("{}/monitoring/metric", base_url); let mut interval = interval(Duration::from_secs(20)); loop { interval.tick().await; let metric = self.collect_metrics(); println!("Collected metrics: {:?}", metric); match client.post(&url).json(&metric).send().await { Ok(res) => println!( "✅ Sent metrics for server {} | Status: {}", metric.server_id, res.status() ), Err(err) => eprintln!("❌ Failed to send metrics: {}", err), } } } fn collect_metrics(&mut self) -> MetricDto { self.sys.refresh_all(); // CPU let cpu_load = self.sys.global_cpu_info().cpu_usage() as f64; let cpu_temp = get_cpu_temp().unwrap_or(0.0) as f64; // RAM let total_memory = self.sys.total_memory(); let used_memory = self.sys.used_memory(); let ram_load = (used_memory as f64 / total_memory as f64) * 100.0; let ram_size = (total_memory as f64) / 1024.0 / 1024.0; // Disk let disk = self.sys.disks().first(); // In collect_metrics(): let (disk_size, disk_usage, disk_temp) = { let mut total_size = 0u64; let mut total_used = 0u64; let mut temp = 0.0; let mut count = 0; for disk in self.sys.disks() { total_size += disk.total_space(); total_used += disk.total_space() - disk.available_space(); count += 1; } // Disk temperature (Linux only) #[cfg(target_os = "linux")] { if let Ok(dir) = fs::read_dir("/sys/block") { for entry in dir.flatten() { if let Some(disk_name) = entry.file_name().to_str() { if disk_name.starts_with("sd") || disk_name.starts_with("nvme") { let temp_path = format!( "/sys/block/{}/device/hwmon/hwmon*/temp1_input", disk_name ); if let Ok(paths) = glob::glob(&temp_path) { for path in paths.flatten() { if let Ok(content) = fs::read_to_string(path) { if let Ok(t) = content.trim().parse::() { temp += t / 1000.0; // Convert millidegrees break; } } } } } } } } } let size_gb = if count > 0 { (total_size as f64) / 1024.0 / 1024.0 / 1024.0 } else { 0.0 }; let usage = if total_size > 0 { (total_used as f64 / total_size as f64) * 100.0 } else { 0.0 }; let avg_temp = if count > 0 { temp / count as f32 } else { 0.0 }; (size_gb, usage, avg_temp) }; // GPU (NVIDIA) let (gpu_temp, gpu_load, vram_used, vram_total) = if let Some(nvml) = &self.nvml { if let Ok(device) = nvml.device_by_index(0) { let temp = device .temperature(nvml_wrapper::enum_wrappers::device::TemperatureSensor::Gpu) .unwrap_or(0) as f64; let load = device .utilization_rates() .map(|u| u.gpu as f64) .unwrap_or(0.0); let mem = device.memory_info().ok(); let used = mem .clone() .map(|m| (m.used as f64) / 1024.0 / 1024.0 / 1024.0) .unwrap_or(0.0); // GB let total = mem .map(|m| (m.total as f64) / 1024.0 / 1024.0 / 1024.0) .unwrap_or(0.0); // GB (temp, load, used, total) } else { (0.0, 0.0, 0.0, 0.0) } } else { (0.0, 0.0, 0.0, 0.0) }; // Network (convert bytes to bits) let (net_in, net_out) = get_network_traffic().unwrap_or((0, 0)); let net_in_bits = (net_in as f64) * 8.0; let net_out_bits = (net_out as f64) * 8.0; MetricDto { server_id: self.server_id, ip_address: self.ip_address.clone(), cpu_load, cpu_temp, gpu_load, gpu_temp, gpu_vram_size: vram_total, gpu_vram_usage: if vram_total > 0.0 { (vram_used / vram_total) * 100.0 } else { 0.0 }, ram_load, ram_size, disk_size, disk_usage: disk_usage, disk_temp: 0.0, // not supported net_in: net_in_bits, net_out: net_out_bits, } } } fn get_cpu_temp() -> Option { #[cfg(target_os = "linux")] { // Versuche mehrere Methoden der Reihe nach // 1. sensors-Befehl if let Ok(output) = Command::new("sensors").output() { let stdout = String::from_utf8_lossy(&output.stdout); for line in stdout.lines() { if line.contains("Package id") || line.contains("Tdie") || line.contains("CPU Temp") { if let Some(temp_str) = line .split('+') .nth(1) .and_then(|s| s.split_whitespace().next()) { if let Ok(temp) = temp_str.replace("°C", "").parse::() { return Some(temp); } } } } } // 2. Sysfs (Intel/AMD) if let Ok(content) = fs::read_to_string("/sys/class/thermal/thermal_zone0/temp") { if let Ok(temp) = content.trim().parse::() { return Some(temp / 1000.0); } } // 3. Alternative Sysfs-Pfade let paths = [ "/sys/class/hwmon/hwmon*/temp1_input", "/sys/class/hwmon/hwmon*/device/temp1_input", ]; for path_pattern in &paths { if let Ok(paths) = glob::glob(path_pattern) { for path in paths.flatten() { if let Ok(content) = fs::read_to_string(&path) { if let Ok(temp) = content.trim().parse::() { return Some(temp / 1000.0); } } } } } } #[cfg(target_os = "windows")] { // Windows: OpenHardwareMonitor über WMI abfragen let output = Command::new("wmic") .args(&[ "/namespace:\\root\\OpenHardwareMonitor", "path", "Sensor", "get", "Value,Name", "/format:list", ]) .output() .ok()?; let stdout = String::from_utf8_lossy(&output.stdout); for line in stdout.lines() { if line.contains("Name=CPU Package") && line.contains("Value=") { if let Some(value) = line.split("Value=").nth(1) { return value.trim().parse::().ok(); } } } // Fallback: Standard WMI let output = Command::new("wmic") .args(&["cpu", "get", "Temperature", "/Value"]) .output() .ok()?; let stdout = String::from_utf8_lossy(&output.stdout); for line in stdout.lines() { if line.starts_with("Temperature=") { return line.replace("Temperature=", "").trim().parse::().ok(); } } } None } fn get_disk_info() -> (f64, f64, f64) { let mut sys = System::new(); sys.refresh_disks(); sys.refresh_disks_list(); let mut total_size = 0u64; let mut total_used = 0u64; let mut count = 0; for disk in sys.disks() { // Ignoriere CD-ROMs und kleine Systempartitionen if disk.total_space() > 100 * 1024 * 1024 { // > 100MB total_size += disk.total_space(); total_used += disk.total_space() - disk.available_space(); count += 1; } } // Berechnungen let size_gb = if count > 0 { total_size as f64 / (1024.0 * 1024.0 * 1024.0) } else { // Fallback: Versuche df unter Linux #[cfg(target_os = "linux")] { if let Ok(output) = Command::new("df") .arg("-B1") .arg("--output=size,used") .output() { let stdout = String::from_utf8_lossy(&output.stdout); for line in stdout.lines().skip(1) { let parts: Vec<&str> = line.split_whitespace().collect(); if parts.len() == 2 { if let (Ok(size), Ok(used)) = (parts[0].parse::(), parts[1].parse::()) { total_size += size; total_used += used; count += 1; } } } total_size as f64 / (1024.0 * 1024.0 * 1024.0) } else { 0.0 } } #[cfg(not(target_os = "linux"))] { 0.0 } }; let usage = if total_size > 0 { (total_used as f64 / total_size as f64) * 100.0 } else { 0.0 }; (size_gb, usage, 0.0) // Disk-Temp bleibt 0.0 ohne spezielle Hardware } #[cfg(target_os = "windows")] fn get_network_traffic() -> Option<(u64, u64)> { use std::mem::size_of; use std::ptr::null_mut; use winapi::shared::ifmib::{MIB_IFROW, MIB_IFTABLE}; use winapi::um::iphlpapi::GetIfTable; unsafe { // Erste Abfrage zur Bestimmung der benötigten Puffergröße let mut buffer_size = 0u32; if GetIfTable(null_mut(), &mut buffer_size, 0) != winapi::shared::winerror::ERROR_INSUFFICIENT_BUFFER { return None; } // Puffer allozieren let mut buffer = vec![0u8; buffer_size as usize]; let if_table = buffer.as_mut_ptr() as *mut MIB_IFTABLE; // Tatsächliche Daten abrufen if GetIfTable(if_table, &mut buffer_size, 0) != 0 { return None; } // Daten auswerten let mut rx_total = 0u64; let mut tx_total = 0u64; for i in 0..(*if_table).dwNumEntries { let row = &*((*if_table).table.as_ptr().offset(i as isize)); rx_total += row.dwInOctets as u64; tx_total += row.dwOutOctets as u64; } Some((rx_total, tx_total)) } } #[cfg(target_os = "linux")] fn get_network_traffic() -> Option<(u64, u64)> { // Bessere Methode mit sysfs let mut rx_total = 0u64; let mut tx_total = 0u64; if let Ok(dir) = fs::read_dir("/sys/class/net") { for entry in dir.flatten() { let iface = entry.file_name(); let iface_name = iface.to_string_lossy(); // Ignoriere virtuelle Interfaces if !iface_name.starts_with("lo") && !iface_name.starts_with("virbr") { if let (Ok(rx), Ok(tx)) = ( fs::read_to_string(entry.path().join("statistics/rx_bytes")), fs::read_to_string(entry.path().join("statistics/tx_bytes")), ) { rx_total += rx.trim().parse::().unwrap_or(0); tx_total += tx.trim().parse::().unwrap_or(0); } } } } Some((rx_total, tx_total)) } #[tokio::main] async fn main() -> Result<(), Box> { let server_base_url = "http://localhost:5000"; // Registration phase println!("Starting registration process..."); let (server_id, ip_address) = register_with_server(server_base_url).await?; // Start heartbeat in background let heartbeat_handle = tokio::spawn({ let ip = ip_address.clone(); async move { if let Err(e) = heartbeat_loop(server_base_url, &ip).await { eprintln!("Heartbeat loop failed: {}", e); } } }); // Start metrics collection println!("Starting metrics collection..."); let mut metrics_collector = MetricsCollector::new(server_id, ip_address); metrics_collector .collect_and_send_loop(server_base_url) .await?; heartbeat_handle.await?; Ok(()) } #[tokio::test] async fn test_metrics() { println!("CPU Temp: {:?}", get_cpu_temp()); println!("Disk Info: {:?}", get_disk_info()); println!("Network: {:?}", get_network_traffic()); }